If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+24x-384=0
a = 16; b = 24; c = -384;
Δ = b2-4ac
Δ = 242-4·16·(-384)
Δ = 25152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25152}=\sqrt{64*393}=\sqrt{64}*\sqrt{393}=8\sqrt{393}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{393}}{2*16}=\frac{-24-8\sqrt{393}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{393}}{2*16}=\frac{-24+8\sqrt{393}}{32} $
| -4x+-5=11 | | 3x=66,x= | | 8x-34=-178 | | y=-16+11 | | 31-3c=2-4c+7 | | 3x=66x= | | -9b+18=-3-16b | | 6x-x=3-13 | | 3b-56=-14 | | 2^2x=2^6 | | 6x+x=13+3 | | 10x=1,000,000 | | 2u−8=2 | | 015=y-0.45 | | 2-6/8k=1/8k+9 | | 3/4=1.5/x | | 7(x+5)-3(2x+3)=33 | | 3x+5=3/4 | | 41+2x=67 | | X/2.3-15+4.2x=69.5 | | (x^2-36)(x^2-6x)/(x^2)(x^2+4x-60)=0 | | 10-4w=2w+2 | | 3(1.61+-1.33y)+10y=8.75 | | 1/7^m+2=49^m+5 | | 504*x=42 | | 3(x+2)-5x=23 | | F(x)=-7x-1 | | 4.5(x-3)=-27 | | 11^2+b^2=17^2 | | 6^2y=36^y-2 | | 54+m=89 | | (6)1/6x=1(6) |